PHYSICAL REVIEW B VOLUME 61, NUMBER 4 15 JANUARY 2000-11

Green function Monte Carlo with stochastic reconfiguration: An effective remedy
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A recent technique, proposed to alleviate the “sign problem disease,” is discussed in detail. As is well
known, the ground state of a given Hamiltonidrcan be obtained by applying the propagagof'” to a trial
wave functiony and sampling statistically the stage=e "7y for large imaginary timer. However, the
sign problem may appear in the simulation and such statistical propagation would be practically impossible
without employing some approximation such as the “fixed nodEN) one. The present method allows the
improvement of the FN dynamics with a systematic correction scheme. This is possible by the simple require-
ment that, after a short imaginary time propagation via the FN Hamiltonian, a numbércorrelation
functions can be further constrained todectby small perturbations of the FN state, which is free from the
sign problem. By iterating this procedure, the Monte Carlo average sign, which is almost zero when there is a
sign problem, remains stable and finite even for largeThe proposed algorithm is tested against exact
diagonalization data available on finite lattices. It is also shown, in some test cases, that the dependence of the
results upon the few parameters entering the stochastic technique can be very easily controlled, unless for
exceptional cases.

[. INTRODUCTION by accepting a new trial configuratios; . ; from a given one
X, If @ random numbel¢ between zero and one satisfies
In the last few years, enormous progress in computationad<|#s(Xn+ 1)/ ¥s(Xn)|?, otherwise the trial configuration is
techniques has been accompanied by better and better péet accepted ang,, ;=X .
formances of modern computers. All these developments The iterative rule that determines a new configuration
have certainly contributed to the “feeling” that the many Xn+1 Starting from a previous ong,, and depending also on
body problem of solving a strongly correlated Hamiltonian,@ random number, defines a Markov chain that allows one to
with many electrons on a reasonably large system size, igbtain statistical estimates of the variational expectation val-
becoming possible with some computational effort. ues. This is possible even if the dimension of the Hilbert

The various numerical methods proposed so far in ordepPace is very large, a property representing the most impor-
to find the ground state of a physically interesting Hamil-tant advantage of the statistical methods over the ED tech-

ique.

tonian, can be classified into two main branches developin . . . .
P 8 From this point of view, the Green-function Monte Carlo

from two root methods: the exact diagonalization technlque(GFMC) techniqué can be considered as a development of

(ED) and the variational Monte Carlo meth@dMC). h b it all I istically th
The first technique is a brute force diagonalization of thet e VMC, because it allows to sample statistically the exact
L . . I ground state of a many body Hamiltonikin instead of being
Hamiltonian matrix, which represents a prohibitive task for

. . . . . restricted to the variational wave function. In the GFMC, the
large systems as the linear dimension of this matrix grow@round state is statistically sampled by a setvbfwalkers

exponentially with the number of electrons and the size. Th?wi %), i=1,... M, ie., at each configuration is asso-
use of spatial symmetries and the very efficient Lanczogjated a weighty; in order to represent the amplitude of the
technique have recently made possible the exact ground-stgjgye function on the element of the large(or even infi-
evaluation of up to~30 electrons for simple lattice 2Ham|I— nite) Hilbert space. A Markov chain—slightly more compli-
tonians like: the Heisenberg modethe t—J model? the  cated than the variational one—can be easily defined for the
Hubbard model and related oneklowever, this is far from  GEMC as well. As it will be shown later on, the new con-
_being enough for the_ de_te_rmination of the physical propertiesigurations and weightsw ,x;) .1 depend only on the pre-

in the thermodynamic limit. Recent progress has been madgous weights and configurationsv(,x;),, and M random

by using ED within the so called density-matrix renormaliza-numbers¢; . This iteration is equivalent, statistically, to a
tion group techniquéDMRG),** which allows to obtain al-  matrix-vector product

most exact—at least in one dimension—large size ground-
state properties.
The second branch of development starts from the VMC ¢n+1(X'):§ Gy x#n(X), (1)
techniqué®. The VMC allows one to sample statistically a
variational wave functionjs(x), defined on a given basis where G, , is the lattice Green function, which is simply
set whose elements} are represented by simptenfigura-  related to the Hamiltonian matrix in the given basis
tions defined typically by the electron positions and spins. In
the simplest formulation, the VMC sampling can be obtained Gy x=Ady x—Hy &, (2
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whereA is a suitable constant, allowing the convergence of In the first five sections of this paper we will briefly re-
Eqg. (1) to the ground state dfl for largen. At each Markov  view the basic steps of the GFMC for the general case when
iteration n, the statey,(x) is sampled statistically by the the sign problem affects the practical implementation of the
walkers, whose numbevl can be large, but is typically a algorithm. In Sec. VI, we will introduce the Stochastic Re-
negligible fraction of the total Hilbert space dimension. configuration(SR) technique. In the remaining sections we
In the statistical iteration process the weights of the  Will present the details of the algorithm and some test results,
walkers increase or decrease exponentially, so that after @seful to understand the practical implementation, for an ef-
few iterations most of the walkers have an irrelevant weighficient and controlled improvement of the FN, even for large
w and some kind of reconfiguration becomes necessary iflystem sizes.
order to avoid large statistical error§he process to elimi-
nate the irrele_vant Wa_lkers fr_om the_ statisticgl sam_plin_g is IIl. THE GFMC TECHNIQUE
called “branching.” This consists for instance in duplicating
a walker with largew; in two walkers with half the weights From a general point of view, the ground statg of a
w;/2 acting on the same configuration, or in dropping thelattice HamiltonianH can be obtained by iterating the well
walkers with too small weights. For long—and therefore moreknown power method Eqgl) and (2) so thaty,— i, for
accurate—Markov chains, it is also necessary to control thiargen, provided the initial state/; at the first iteration of
number of walkers otherwise the simulation will exceed theEq. (1) (#,= ¢y for n=1) is a trial state not orthogonal to
maximum available memory or it will terminate for lack of the ground state,.
walkers. This reconfiguration of the walker population intro- A stochastic approach is possible if one can sample sta-
duces some amount of bias. Recently, a rigorous and simpkstically the matrix-vector iteration€l). This is particularly
way of working at finite number of walkers has beenimportant since for large systems, only a few power itera-
proposed which simplifies the GFMC technique by control- tions, at most, can be applied exactly.
ling and eventually eliminating the bias due to the finite Following Ref. 8, it is first convenient to define the basic
walker population. element of the stochastic approach; the so called walker. A
With a slight generalization of the previous technique it iswalker is determined by an indexcorresponding to a given
also possible to alleviate the infamous “sign problem,” element/x) of the chosen basis and a weight Within the
which occurs when the matrix elements of the lattice Greerstochastic approach the walker “walks” in the Hilbert space
function G, , are not always positive definite. In this case of the matrixH and assumes a configuratienx according
the iteration(1) can still have a statistical meaning at the to a given probability distributiorP(w,x). The task of the
price of having walkers with weights;, which are no longer GFMC approach is to define a Markov chain, yielding a
restricted to be positive. It then happens that the averagerobability distributionP,(w,x) for the walker, which deter-
weight sign(s),= (=M ,w;), /(=M ,|wi|), at a Markov itera- mines the iterated wave functiaf, :
tion n is exponentially decreasing with, implying a dra-
matic decrease of the signal-to-noise ratio for all correlation
functions. A remarkable improvement of the GFMC on a l/fn(X)=<X|'ﬂn>:f dw wP,(w,X). )
lattice was realized when the fixed no@e\) approximation,
largely employed for fermions in the continuum, was ex-
tended to lattice Hamiltoniar¥sin this case, the “danger-

ous” negative off-diagonal elements of the Green function  one of the most important advantages of the GFMC tech-
are neglected, and stable simulations with positive Wa|kehique is the possibility of reducing the variance of the energy
weightsw; can be performed at the price of having only anpy exploiting some information on the ground-state wave
approximate solution of the ground-state wave function. function, known a priori on physical grounds. Following
The Green-function Monte Carlo with Stochastic Ceperley and Kalo&! one can consider in the iteratiga)

Reconfiguratiof (GFMCSR represents a successful at- not the original matrixG, but the slightly more involved
tempt of improving over the FN, with a stable simulation yonsymmetric one

without any sign problem instability. In this scheme, better

and better approximations of the ground-state correlation - ,

functions maﬁge obtained by perfor?ning controlled Markov Gy x= ¥a(X") Gy x/ ha(X), 4
chain simulations with average walker sids),, very close

to 1 for each iteratiom. For the sake of simplicity we will
restrict the forthcoming derivation to lattice Hamiltonians
but t_he basic ideas can be stra_ightforwardly extendgd to th e ground state dfi. Here and in the following, we assume
Co_”t'””“m case. This meth_od IS based upon _the simple "hat Ys(Xx) is always non-vanishing for alt. It is obvious
quirement that after a few iterations of E() via the ap- = ,

proximate FN dynamics, a numbpiof correlation functions ~ thatG, though nonsymmetric, has the same spectru@ aé
can be further constrained to leeactby appropriate small for any eigenvectory,(x) of G with energy A—E,,
perturbations of the propagated FN stgfd', which is free  ¥a(X) ¥(X) is a right eigenvector o with the same eigen-
from the sign problem. By iterating this procedure the avervalue.

age sign remains stable even for largend, in this limit, the As shown later on, by sampling statistically the iteration
method has the important property of being in princiglact (1) with G instead ofG, the walkers {,x) will be distrib-

if all possible correlation functions are included. uted for largen according toy(X) (X)), namely i, (X)

Ill. IMPORTANCE SAMPLING

where iy is the so calledyuiding wave functionthat has to
be as simple as possible to be efficiently implemented in the
calculation of the matrix elements, and as close as possible to
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(X)) be(X) in EQ. (3). In order to evaluate the ground-state clearly defined in terms of an appropriate Green function
energy, it is then enough to average the so called local engeff with all positive matrix elements. Even if the latter

ergy, restriction may appear rather strong, it is however possible
(WalH[x) that for largen the approximate propagation of the stdrf‘éf
EX:G—:2 Ye(X Y Hyr I ha(X), (5) by the Green functio®'" is not far, in a sense to be speci-
(¥alx) x! fied below, from the true pﬁ)pagation of, by the exact
over the statistically sampled walkers. Green functionG in Eq. (2). Giffx needs not to be normal-
Analogously, after the transformatidd), all mixed aver- ized, as its normalization can be included in the definition of
age correlation functions the positive constant
(6|0 o) _
—— 6 b,=> G 10
<¢G|¢O> ( ) X ; X', X ( )

are easily accessible by GFMC for arbitrary linear operatorgg nat
OK. The local estimator corresponding to H@) is, analo-

gously to Eq.(5), given by aiff,fx: Py 5Dy (11)
ok=> 6‘; o (7) Here, we follow a recent development of the FN method
X! on a lattice'® and we choose foB®'f the FN Green function
where (with importance sampling
, —eff _ eff
0f, = a(X )05,/ hs(X), ®) Gy, =Adu—Hu (12

are the operator matrix elements transformed according tdhe constant shiftA has to be large enough that all the

the guiding wave function. Summarizing, in order to imple- giagonal elements oB®'f are strictly positive. This is pos-
ment the “importance samplmgl’(’ strategy it is sufficient to sjple in general for the diagonal elementsHf is appro-
replace all the original matrice®,, , andG with the trans-  priately defined? one can prove that its ground statea

formed nonsymmetric matrica3k (8) andG (4). In the fol-  variational state of H with an energy better than the guiding
lowing, for simplicity of notations, we put a bar over the Wave function oneHere, we slightly modify this approach
symbols corresponding to all the transformed matriees Which neglects all the matrix elements bf crossing the
and(8). We finally remark that, since the convergence of thenodes of the guiding wave function, namely the ones with

power method1) is not limited to symmetric matrices, the H,, ,>0, by defining a matrix elemerﬁf,ffx<0 even when

GFMC method can b_e more_generally consid_ered an efficierﬁxr >0 (see below The generalization of the above “FN
tool to find the maximum eigenvalue and eigenvector of &hegrem” to this case is straightforward and is reported in

generic matrixG. the Appendix A. Our experience has shown that it is ex-
tremely important to cross the nodes on a lattice within the
IV. SINGLE WALKER FORMULATION above variational scheme. For instance, the simplest choice

it eff
In general the distributiof®(w,x) in Eq. (3) is sampled for a positive G®'', |.e.,eftfo take the absolute value of the
|Gy x|, leads to much larger

by a finite numbeM of walkers. Let us first consider the ©Xact Green functionG, = _

simpler casé = 1. In order to define a statistical implemen- Statistical errors and much less accurate results, especially

tation of the matrix multiplicatior{1), the standard approach for fermion systems. _

is to determine first the nonvanishing Green function matrix More in detail, the definition of thed®'" we use is as

eIementsEX,,X for all {x’}. These matrix elements can be follows. The off-diagonal matrix elements are given by

generally written in terms of three factors _ I
—ett | Hxx if Hy <0

~ _ H = — — 13
C':‘x’,x_sx/,xpx/,xbx’ (9) XX _')’Hx’,x if Hx’,x>0- ( )

whereb, is a positive normalization factos, , takes into
account the sign of the matrix element gund , is a stochas-
tic matrix. All these terms will be defined explicitly below. HET=H, .+ (1+ ) Vy(X), (14)
The basic step of the GFMC method on a lattice is to ’ ’
define properly the matrip, ,, because it represents the where thesign-flip contribution ig3
term in the decompositiof®) allowing to select statistically
only oneconfiguration among all the possilie’} connected
to x. Therefore,p,: , has to represent a probability and is
restricted to bei) normalized=,. py. v=1 and(ii) with all
positive matrix elementp,, ,=0. This is just the definition Notice that there is no difference between the diagonal ele-
of a stochastic matri#? Since the matrix elements & are ~ ments of the Hamiltoniaki*' (H) and the ones of the trans-
not restricted to be positivésign problem p,. , is more  formed matrixH®'" (H), as defined by Eq8).

wherey is positive constant, and the diagonal ones by

Ve(¥)= > Hy' x- (15)

{ﬁx’,x>0v X" #x}
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With these definitions, Eq9) for G holds if the factor
Syr x IS given by

1 if Gy =0
~ly if Gy ,<0
SX/’X: A—H (16)
—Xfxf if  x'=x.
A—H,

The appropriate stochastic proce@darkov iteration
relative to the Hamiltoniatd can be defined by the follow-
ing three steps, where we simply allow the weighof the
walker to become also negative

(1) Given the walker ,x), change the weight by res-
caling it with b, as defined in Eq(10):

w'=bh,w.

(2) Generate at random a new configuratidraccording
to the stochastic matripy: -

(3) Multiply the new weightw’ by the sign factos,: , as
given by Eq.(16):

W —W'S,/ . a7

Without the step(3), one is actually sampling the Hamil-
tonianH®', which we expector assumgto have a ground
state close to the one #f, for suitably chosen guiding wave
function. During the Markov iteratiofi17) it is straightfor-
ward therefore to update both the weightissociated to the
true Hamiltonian, and the one®'" associated to the approxi-
mate FN oneH¢ff. From now on therefore the walker will be
characterized by the triad

(W Weff

,X).

The previous algorithnil7) allows us to define the evo-
lution of the probability density for having a walker with
weightsw, andw®'" (>0), in the configuratiorx, namely:

, , w’ Weff/
Pn+l(W’1Weff 1X’):E sz = Pn( ’ b 1X) .
X bX|SX/,X| bXSX/,X X
(18

The first moments of the distributioR over w and we'
give the state/,(x) propagated with the exact Green func-
tion G and the statebﬁ”(x) propagated with the FN Green

function G®'f, respectively. Indeed, by defining the propa-
gated wave functions as

zpn(x):J dvve”f dw w P,(w,we'f x), (19

wﬁ”(x)=J dvve”J dwwe TP (w,wef x), (20

one can readily verify, using Eq18), that ¢, and z,//ﬁf sat-
isfy the iteration conditioril) with G andG®'f, respectively.

errors: unfortunately these errors may be very large, and in-
creasing with the iteration numbey especially when there is
sign problem.

The configurations,, that are generated in the Markov
process are distributed, after many iterations, according to
the maximum right eigenstate of the matpx , (as only the
matrix p is effective in the matrix produdtl), if we neglect
the weights of the walkejsThis state is in general different
from the stateyg(X)¥o(X) we are interested in. So after
many iterations the sampled configurationsare distributed
according to an approximate state, but we can consider this
state as a trial staté for the initial iteration 6=1) in the
power method1). At any Markov iteratiomn, we can com-
pute the weight of the walker assuming thaiterations be-
fore its value was simplyw=1. In this way, it is simple to
compute the resulting weight of the walker afterpower

Green functionG applications

L
GYL‘:JHl b St 1 (21)

Therefore, for instance, in order to compute the energy with
a single Markov chain of many iterations, the following
quantity is usually sampled

$.Ex Gy

Eq= , (22

.G,

with L fixed 128

This would conclude the GFMC scheme, if averages over
the weight variabIeGh were possible in a stable and con-
trolled manner. However, there are two important drawbacks
for the single walker formulation. The first one arises be-
cause the weighB}; of the walker grows exponentially with
L—simply as a result of thé independent products in Eq.
(21)—and can assume very large values, implying diverging
variances in the above averages. This problem has a very
well-established solution by generalizing the GFMC to many
walkers and introducing a scherti@anching that enables to
carry out walkers with reasonable values of the weights, by
dropping the irrelevant walkers with small weights and split-
ting the ones with large weights. Recently a simple formula-
tion of this scheme was defined at fixed number of wafkers
in a way that allows to control efficiently the residual bias
related to the finite walker population. The second drawback
is the more difficult one, and is due to the sign problem. The
average sign(s )=3,G:/3,|Gk| vanishes exponentially
with L. In the formulation of Ref. 8 this problem looks quite
similar to the first simple one. As we will see later on, some
kind of remedy can be defined by a simple generalization of
the SR, which is exact in the case with no sign problem.

V. CARRYING MANY CONFIGURATIONS
SIMULTANEOUSLY

At this stage the algorithm is exact, and the Markov itera- Given M walkers we denote the corresponding configura-

tion allows us to sample the ground statetbf(with sign
problem andHeéff (without sign problem within statistical

tions and weights with two vectorsv(x), where each vector
component ; ,Wf’”,xi) i=1,... M, corresponds to the
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ith walker. Following Ref. 8, it is easy to generalize ER)

to many walkers by the corresponding probabilty(w,x)

of having theM walkers with weights and configurations
(w,x) at the iterationn. Similarly to the single walker for-
mulation, the propagated wave functiogis(x) and 2(x)
with the true Green functio® and the approximate or@®ff
read

§XX
0= [ [dw]E

Pn(w,X)

(23
eff
BN ————P(W,x),

500 = J [dw]E
where the symbof[dw] |nd|cates the ™ multldlmensmnal
integral over the W, ,we'" variablesi= . M ranging
from —o to o and from O tox, respectively. Equatiof23)
shows that the propagated quantum-mechanical sfgtesd

eff

mme the walker probability functio®,(w,x). In particular,

it is perfectly possible to define a statistical process, the SR

which changes the probability distributiéh), without chang-
ing the exactinformation content, i.e.p, and ", In this
way a linear transformation dP,, described by a simple
kernelX(w’,x";w,x), will be explicitly given

Pé(ﬂ'-é')=J' [dw]D) X(W' X" ;W,X)Py(W,X). (24)

When there is no sign problemvé’=w) it is possible to
define the kerneX (Ref. 8 by requiring that the weights/]
are all equal tax;w;/M after the SR. In this case, the algo
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completely independent for differepvalues. In particular, it
is possible to integrate easily each of thiefactors of the
kernel in the variablesy/, w®'"" and to sum over the con-
f|gurat|onsxJ the result belng simply one, as it is required
by the normalization condition of the probability densiRy
in Eg. (24). In general, the SR defines new stagg$x) and

' eff(x) from the given stateg/,(x) and ¢¢'(x) at the
given Markov iterationn. The new statesy/,(x) and
! ¢"(x) are simply obtained by replacifgwith P’ in Eq.
(23). The SR will be exact if it does not affect the evolution
of the statey,(x) during the Markov chain, namely when-
ever

Y ()= (). (26)
In the SR, the new configurations are taken randomly
among the old onegx;}, according to the probability
[Py |/Zj|py |, defined below in terms of the given weights
{w ]} {wef } and configurationgx;}. Moreover, the welghts
are changed consistently to Eq25 by wy
12 Wi /Msgnpx and the FN weights, restricted to be

positive, are defined by taking their absolute valugs"
=|wil.

The coefficientﬁzEjpxj/2j|pxj| guarantees that the nor-
malization is preserved by the SR, namely,/(X)
=2>,,(x). This coefficientB represents also the expected
average walker siggs)’ =3,;w;/>;|w/| after the reconfigu-
ration. It is supposed to be much higher than the average sign
before the reconfiguratioqs)=3;w;/Zj|w;[, so that a
stable simulation with approximately constant average sign
(s) can be obtained by iteratively applying the SR every

rithm is exact, and allows to perform stable simulations byf€W Kp steps of the power method iteratiéf).

applying the SR each few, iterations. Furthermore, by in-
creasing the number of walkelkA; the exponential growth in

the variance of the weights; can always be reduced and the SR:w/ =Sgnpy/ andw;

systematically controlled. In fact, for large enoulyh it is
possible to work withL sufficiently large {«M) obtaining
results already converged in the power method iteration
and with small error bars.

VI. STOCHASTIC RECONFIGURATION,
STABILIZATION OF THE SIGN PROBLEM

In the actual implementation of this algorithfeee Sec.
VII for the detailg the weights are reset to unit values after

et — 1, whereas only the overall

constantB™ 12 w; /M common to all the different walkers,
is stored in a sequential file. As in the single walker formu-
lation we can assume that, at any given iteratioi. itera-
tions before the trial statg is given by the equilibrium
distribution of walkers with unit weightsw;=sgn Px;-

Therefore, in order to obtain the weights predicted by the Eq.
(25 for L power method iterations starting fromi it is

In order to avoid the sign problem instability, at least in enough to multiply the previoud /k, saved factorsf,
an approximate way, we can follow the previous scheme by=/5 - '2jw; /M. This yields a natural extension of the factors

using the following kerneK that defines the SKR4)
2j|pxj| 5xi’ X

2 [py

X(W’,x’;w,x)zl_[
- - —— ix1

7121Wi
X O\ Wi — B — == sgnpy
M i
X Swe —|w/]), (25)
where the coefficientp, will be defined in the following,
and B:Ejpxj/21|pxj|. The kernel(25) has a particularly
simple form since the outcoming variablg§ and wj’ are

G in Eq. (21) to the many walker case

Likp

L_
Gn_ H fnfk><k
k=1 p

and the corresponding mixed average correlation functions
are obtained by averaging the local estimators over all the
iterationsn just before the SRi.e., n is a multiple ofk,)

(27)

3,Gr;w;0f

(0Y=———

28
S0Gr W 29

where, in the above equation, the weightsand the local
esnmatorsO" are evaluated only before the SR.



2604 SANDRO SORELLA AND LUCA CAPRIOTTI PRB 61

A. Choice of the coefficientspXj A simple calculation shows that with this reconfiguration,
that clearly improves the sign, the value of the eneftipe

The only quantity which we still need to define properly = . e
yd y properly mixed average energyemains statistically the same before

the whole algorithm, in the kernel of ER5) are the coef- ) .
ficients Px, which have notto be assumed positive. These and after the SRsee Appendices B and)Qt is clear, how-

. : ) ever, that this is not enough to guarantee convergence to the
coefficients may depend on all the weights, the configu-  exact ground state, because fulfilment of E20) does not

rationsx; and the FN weightsv; . imply the exact equality26). We can improve the definition
The choicep, =w; is exact in the sense that,(X)  of the constantp, by including an arbitrary numbep of

=yn(x), and coincides with the one for the case withoutparameters withp%M,

sign problenf However, this choice is obviously not conve-

nient, because this reconfiguration will not improve the sign, Py :Wjeff[lJr ay (O} —OL)+-- -+ ap(Of —08 )]

which will decay exponentially in the same way. J i (32
Instead, in the case with sign problem, we can parameter-

ize the coefficientspxj by assuming they are close enough to yroportional to the f|uctuati0n@§j — 0¥ of p different op-

eff i .
}, the ones obtained with  grators Ok with corresponding local estimatorsD)'jj

the positive definite weightgw;
= (| OMx)(Ws|x;) (k=1,--,p), and average value

the FN Green functiorGe'". The reason for this choice is
that, though the wei hte®'" may be occasionally very dif-
J e Y y Ve over the positive weigh@ffzzjwf”otjliwf”. With the

ferent from the exact weights;—namely their sign can be
wrong—they sample a sta; ff(x), which is supposed to be more general fornt32) for the coefficientspxj it is possible
quite close to the exact propagated statéx). This condi-  to fulfill that all the mixed averages for the chosgmpera-
tion is clearly verified for an appropriate choice of the guid-tors have the same value before and after the SR
ing wave functionygg, making the FN accurate. Then, we
assume that small perturbations over the stdt(x) may
lead to fulfill the equality(26) with an arbitrarily small error.
This error will affect the equilibrium walker distributioR,,
for largen, but there will be no problem if this errdi) is  In general, the reference weight§'" in Eq. (32) may be
small and(ii) can be reduced within the desired accuracy. also different from the ones generated by the FN Green func-

In the simplest and most practical formulation we requiretion, the only restriction is thaw?'">0 for each walkej
that only the average energy before and after the SR coincideee Appendix C 2

It can be proven that, in order to fulfill exactly the SR

2 O hn(X)= 2 O (). (33

— = , conditions(33), it is sufficientthat the coefficientp, are
H, X)= H, X 29 %
XE,;X wxalX) ;?X < nlX) @ chosen in a way that
[the denomi_na_lt_ors in the mixed averagés are already E;px.oi ijjol;_
equal by definition, a& i, (x) ==,/ (x) for the choser 1 1 L (34)
in Eq. (25)]. Then, we define 2Py, Zjw;
_ eff = which can be fulfilled with a solution of a simple linear
Py =W [1+a(EXj Eerr)] system for the unknown variables, , for k=1, ... p, as
and described in the Appendix C. The conditiof8}) are much
simpler to handle, because they can be satisfied at a given
s wel'E iteration of the Markov process. A theorem, proven in Ap-
eff:# pendix B, guarantees indeed that the exact conditi885
swe' are implied by the constraint84) after the complete statis-
(30) tical average over the walker probability distributienr .
EJWJ EXJ-

B. Proof of the asymptotical convergence of the GFMCSR
Ziw; to the exact result

whereE, is the local energy5) associated to the configu- ~ ASymptotically, by adding more and more parameters
) i — ] {aj}, we can achieve)’,(x) = ,(x) strictly, since the dis-
ration x;. Thus, E represents the estimate of the averageripution y,(x) is completely determined by its correlation
energy correctly sampled with the sign, wher&gs; is the  functions. The proof of this important statement is very
corresponding FN one. In order to satisfy the requiremensimple. Consider first the diagonal operators. All these op-
(29) we just determinex by erators may be written as linear combinations of the “el-

EE ementary” onesoi‘,"X: 5x',x5x,x0 acting on a single configu-
] L (31)  rationxo, plus at most some constants. If conditi¢@8) are
ngf—(Eeff)2 satisfied forall the elementary operatof3* it imnmediately

-, o off - follows that ¢;,(Xo) = ¥n(Xo) for all xg, which is the exact
whereEg == wj" E} /2;wj " is the average square energy sr condition(26). Then it is simple to show that the coeffi-

over the positive weighte'". cients py, determiningP;, and y, are invariant for any
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constant shift of the operato@. Furthermore with a little 2. After all the walkers ,Wje”,xj) have been propa-
algebra it turns out that these coefficiep;gj do not change gated for the total imaginary time intervalr, the SR can be
for any arbitrary linear transformation of the chosen operatoapplied. The mixed average@tj:(¢G|O|xj>/<¢G|xj> are

set:OX =3, L, O (with realL and det.#0) (see Appen- computed at the end of such propagation for the chosen set

dix C 1). Thus the proven convergence of the GFMCSR ISy operators OK. With these quantities bothakff
" e

obtained for any sequence of diagonal operators, that, Wlth_z_wj-:-ffotjlgjwleff and the covariance matri ., in Eq.

increasingp, becomes complete. For nondiagonal operators . o .

O, , we simply note that they assume the same mixed av(C4) are evaluated. By using the latter quantities in the linear
er):e\ge values of the equivalent diagonal Onééjiag system(C3), the coefficientsy, are computed and the table
— 5, .5,0, . Thus, the proof that GFMCSR convéxrges Px, is determined according to EQC2). At this stage the

in principle to the exact solution is valid in general even reconfiguration procedure for the walkers can finally be per-

when nondiagonal operators, such as the Hamiltonian itselfo'med, i.e., the newM configurations of the walkers are
are included in the condition®3). chosen among the old ones according to the probability

|pxj|/2k|pxk|-
(3) The mixed averages of the physical observakﬂés

VIl. DETAILS OF THE ALGORITHM and the quantity

In this section the flow chart of the GFMCSR algorithm is

briefly sketched. As described in Appendix D, it is possible Z Wy 2 pxkl

to work without the extra constant shift and apply directly M Zpy, '

e M7, the usual imaginary time propagator, to filter out the _ o

ground state from the chosen trial wave functigp. needed for the calculation of the statistical averages, are
For practical purposes, the algorithm can be divided intcstored. The walker weights are setwg=sgnp,, and wi'l

three steps(1) the Green function(GF) evolution, (2) the =1, and the GF evolution can continue from stép start-

SR, and(3) the measurements of physical mixed averageng again from the first walker.
correlation functions. These three steps are iterated until a In the practical implementation of the algorithm the FN
satisfactory statistical accuracy is obtained for the lattedynamic can be worked out at fixed wherey has to be a
guantities. non-zero number otherwise the exact GF would not be
The algorithm works with a finite numbeéd of walkers, sampled[see Egs.(13,14]. On the other hand the FN is
which is kept fixed. Starting from the first walkgr<€ 1), the  more accurate foy=0. A good compromise is to work with
basic steps of the algorithm are described below: v=0.5 fixed. An alternative choice is to implement a few
1. In the GF evolution, the exact propaga®r'®” and  runs with different nonzere, and to extrapolate the results
the EN onee """ are applied statistically for a given for y=0, which should represent the most accurate calcula-
imaginary time intervalA 7. In practice this can be done by tion. Typically, this extra effort is not necessary because
setting initially A7,=Ar and repeating the following steps there is a very weak dependence of the results updriow-
until A7>0: ever, the extrapolation t¢—0 is an interesting possibility
(a) Given the configuration of the walkex; , the quanti- for the extension of the method to continuum models, since,

ties Exj, VX)) andHijf’fXj Egs.(5), (15), and(14) are evalu-  In this case, there is no practical way of crossing the nodes

ated. Then the intervak 74 during which the walker is ex- With @ variational FN approactsee Appendix A
pected to perform only diagonal movesee Appendix Dis
computed using the relatidh 7y=min(A7 ,In &), where&

is a random number between 0 and 1 and,
eff

=limy_.AlInpy=E, —H,') according to Eq(D1). In this section some general properties of the GFMCSR
(b) A7 is updatedAr—Ar—A7y and the walker technique are discussed and explicitly tested onJiheJ,

weights  (v; ,w®™) are multiplied respectively by Heisenberg model
e("Ey T NVsi(X)A74 and e ExA7d, Then if A7, >0 a new

VIIl. THE LIMIT OF SMALL A~
AND LARGE NUMBER OF WALKERS

configurationx/ #x; is chosen according to the probability H=J,2, S-S+, >, S-S, (35)
table defined only by the normalized off-diagonal matrix el- () (i
ements Ofpx’,xja where S are the s-1/2 operators sitting on the sites of a

square latticeJ;=1 andJ,=0.5 are the antiferromagnetic
super-exchange couplings between nearest- and next-nearest-

P neighbor pairs of spins, respectively. For the chosen values
' of the parameters of the Hamiltonian the GS of the model is
z Px x; likely to have no magnetic long range ord&in the follow-
X Xj

ing we will consider finite square clusters bf sites with

. ) . periodic boundary conditions. We use the same guiding
and the weightv; is multiplied bys,: . (16). The GF evo-  wave function of Ref. 10 and report here some test results
lution then restarts fronga). Otherwise, ifA7,=0 the GF  useful to understand the crucial dependence of GFMCSR on
evolution for the walkejj terminates and the algorithm pro- the number of walkerM and the distance in imaginary time
ceeds for the next walker starting from step. A7 between two consecutive SR. In fact, after the selection
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of a given numbep of correlation functions in Eq33), the L A LA B B
results depend only on the number of walkéisand the
frequency of reconfiguratiod . In the limit of large num-
ber of walkers, at fixeg, the algorithm has the important

property that the fluctuations of the coefficieagsandO¥ in

Eqg. (32 are obviously vanishing, because they depend on
“averages” of a very large number of samples of many dif-
ferent walkers, implying that these fluctuations are decreas-

%ﬁﬁﬁﬁﬁﬁiiﬁzﬁ
ing with 1/yM. In this limit it is possible to recover an

1
important property of the FNf the guiding wave function is HHHH HH}
80

»

Fai T

—0.4966

'
-0.4968

eo(L)

32

o
Fo- -
Foi-mHp—|

-0.497

exact, the FN averages are also exalct fact suppose we —Qagve Lo Lo L1

begin to apply the propagater "” starting atr=0 from the 0 20 40 60

exact sampling of the ground statl determined by FN L

with the exact guiding wave functiogc= . Then at any FIG. 1. Dependence on the numtteof correcting factors of the

Markov iterationn, before the SR is applied, both the mixed estimated ground state energy per site Nor 64 andJ,=0.5 ob-

average correlation functions calculated with the FN weightsained with the GFMCSR techniqué ¢=0.01) with M =200 (tri-

we'f ((Ok>=2jwf”05j/2jwf”) and the weights with arbi- angle3, 1500 (square} and 10000(circles. The GFMCSR tech-

trary signsw ((OX)=3;w;0%/=;w;) sample statistically Q:qquu;;?ai%p:fsourzg]rgp:r;:]nic;? the energy, #(q), the spin

the true quantum averadely|OX|yo). If, for large M, we

can neglect statistical fluctuations of these averages, then b,y}?ff’: |Wj/|)- In this limit the dynamics described by the SR

Eq. (34) a,=0 and the SR algorithm just replace the weightsconstraints is therefore perfectly defined and meaningful

w; (with sign problem with the FN weightsw?'", which  even in an exact calculation without the Monte Carlo sam-

also samplej, exactly if = o. This means that the SR pling.

approach does not affect this important property of the FN The way the computed results depend on the number of

approach, at least in the limil — oo, walkers is shown in Fig. 1, as a function of the number of
Another reason to work in the limM —oe is the follow-  correcting factors. As shown in Ref. 8 these correcting fac-

ing. In this limit it is not necessary to include in the SR tors allow to eliminate the bias due to the finite population of

conditions(34) operatorOX that vanish for some symmetry walkers in the case there is no sign problem. In this case,

that is satisfied both by the true Hamiltonighand the FN  instead the finite population bias cannot be eliminated even

oneHe'" In fact, if the coeﬁicientspxj are defined in terms PY @n infinite number of factors and a properly large number

f torsOX that the ab tioned M of walkers has to be taken for unbiased simulations. In
o' operator at conserve the above men |on0e SYMME%act for M — the fluctuations of th&, factors are bounded
tries (e.g., translation invariance, rotation by 90° degree o

the lattice, etq. by definition Eq.(33) is satisfied for all the by the central limit theorem byD(l/\/ﬁ). Therefore, for

remaining nonsymmetric operators, which have vanishin C/:rgl‘eanﬂ;irtgzggugm’ they do not play any role in the
expectation value due to symmetry constraistsch as, e.g., g€ q :

an operator that changes sign for a rotation operation which As Itis evident for large number of walkerM(—m;) the .
correcting factors do not play any role and the estimate with

. . T ¢ ff . .
is a symmetry oH andH®"). In this case, both sides of Ed. minimum statistical error is obtained by simply ignoring the
(33) are zero by such symmetry constraints. Moreover, fortorrecting factors. This is actually a common approach in
M—co the statistical fluctuations are negligible and for thegevc to consider a large number of walkers so that the
same reason E¢34) is also automatically satisfied with van- piaq of the finite walker population becomes negligible, and
ishing a, for the above mentioned nonsymmetric operatorstypica”y decreasing as W (see, e.g., Fig.)2 However from
In this limit, it is therefore useless to include nonsymmetricipo picture it is also evident that, for large enoudh the
operators in the SR34). o , predicted results obtained by including or by neglecting the
Finally, it is interesting that in this important limi ¢ recting factors are both consistent. The convergence to
— o, within the assumption that we can neglect the fluctuaine pm o limit is however faster for the first method. Thus
tions Ofa# andO};, the SR depends only on the propagatedthe inclusion of the correcting facto@; in Eq. (28), though
statesy,' () and ¢,(x). In fact given the state/,(x) and  increasing the error bars, may be useful to reachMhe «
the FN oney¢''(x), then the statey/ (x) after the SR willbe  limit with a smaller number of walkers. The fact that the two
types of extrapolation to infinitd —the one including the
"(x)=Cl 1+ k_ Ak eff correcting factors anq the one neglecting them—gonvgrge to
Yn(¥)=C Ek a(Ox= Oerr) | ¥ (x) the same valuésee Fig. 2 shows that the theoretical limit
(36)  when Eq.(36) holds can be reached with a reasonable num-
, ber of walkers, much smaller than the dimension of the Hil-
e (%)=l ()] bert space.

. . . The other parameter affecting the accuracy of the SR ap-
where now they, are uniquely determlned by the conditions proach is the imaginary time distander between two con-
(33), wherea?f the niormahza?f(’)n constantC secutive SR. It is then natural to ask whether by increasing
=Z,n(X)/ 2y (x), and, finally, 47'" replace the FN the frequency of the reconfigurations, one reaches a well
propagated statellﬁ” after the SR(due to the condition defined dynamical limit foA r— 0. This is important since,

100
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_0.4885 LR ‘0-45:----|----|----|----|-'--:
& —0.489 3 o5 p=11 ]
N=100 A7=0.005] D E
-0.4895 3
— & -0.55 |-
-0.4895 3 -
. —049 3 -0.6 [ AT=0.0025
S 3 F M = 50000
_0‘4905 _; _0‘65_IIIIIIIIIIIIIIIIIIIIIIII
. 0 1 2 3 4 5
T
-0.494 -
] FIG. 4. Stable p=9, upper curveand unstableg=11, lower
& —0.4945 = curve) imaginary time evolution of the GFMCSR estimates of the
0.495 _ ground-energy per site fa,,=0.5 and theN= 36 cluster. The hori-
e 3 zontal line indicates the exact result.
0 0.002 0.004 0.0086 0.008
1/M In order to show more clearly how the method is working

. . and systematically correcting the FN we have implemented a
. FIG. 2. Ground state energy per site i&5=0.5 obtained for slightlil/ different gut more sgtraightforward “relearl)se node”
different clusters and different number of walkers. Empty dots aretechnique“ We first apply the standard Flwith y=0, see
data obtained with zero correcting factors while full dots refer to : . YU
converged values ih. The GFMCSR technique is applied using in E_q' (13?] fo_r a given number of walkers/ ‘de fc_Jr long
the SR only the Hamiltonianp=1). simulation time. We store thM_—waIkers configurations, af-
ter some equilibration at time interval large enough to allow
uncorrelated and independent samples of the FN ground
due to the sign problem, for large system sitehe time  state. In a second step we recover each of tivdsealker
interval A hasto be decreased at least by a factor inverselyconfigurations and apply GFMCSR for a fixed imaginary
proportional toN, because the average walker sign vanishegime 7, so that we can see how the energy expectation value
exponentially~e~*s” with an exponent\,, which diverges  eyolves from the FN to a more accurate determination. Typi-
with N. Different calculations, performed for different sizes cally one obtains a reasonable behavior for these curves that
can be compared only when the finifer error (the differ-  always coincides with the exact dynamics in the initial part
ence betweerh 7—0 and finiteA 7) is negligible. where an exact sampling of the sign is possible. However,
As shown in Flg 3, whenever the simulation is stable fOffor |arge imaginary time, exceeding|y smallr and |arge
A7—0, the limit A7—0 can be reached with a linear ex- humber of walkers, some instability may occur leading to
trapolation. This property can be easily understood since ifiesults clearly off, as shown in Fig. 4. In this case, the insta-
the limit of a large number of walkers, the variation of the pjlity is due to the fact that the correlation functioq)
average correlation functions E(8) both for the FN dy- =1/N?3, ].SZS.Zeiq(i—i) which we have used in the SR (
namics and the exact dynamics in a time interval between 9),1°ir{trodtjjce some uncontrolled fluctuations for the mo-

two consecutive SR differ clearly b@(Ar). mentumQ= (7, ) relevant for the antiferromagnetic order
parameter. If we include in the SR technique also the spin
-049 T T T isotropic operator corresponding to the order parameter

m'2=1/N%%; ;S;-§;e'°0-1) and the total spin squarep(
=11) this instability disappearsee, Fig. 4, stable results,
not shown in the picture, are obtained even without the total
spin square, i.e., withp=10). This is a reasonable effect,
since the order parameter has important fluctuations in all
spin directions.

# T T T T
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IX. CONCLUSIONS

T ENETET BTN R B In this paper, we have tried to describe in detail a recently
0 0.02 004 006 008 0.1 proposed technique, the Green function Monte Carlo with
AT Stochastic ReconfiguratioiGFMCSR), that allows to work
FIG. 3. Dependence of the ground state energy per site on thgut t'he ground stat'e energy and related mixed average cor-
imaginary time steph ~ obtained forJ,=0.5 andN=36 with the  relation functions within a controlled accuracy even for mod-
GFMCSR technique by using in the SR the energy=, full  €ls where the conventional Quantum Monte Carlo technique
dots, all S(q), the spin square and the order parametéf (p cannot be used because of the well known sign problem.
=11, empty dots The number of walkers was fixed t This method is rather general: in principle, convergence is
=10000, so that the finitt4 bias can be neglected on this scale. achieved within an arbitrary accuracy if a sufficiently large
The lower horizontal axis coincides with the exact diagonalizationnumberp of correlation functions are constrained to be equal
result. before and after the SR, the basic statistical step used to
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TABLE I. Variational estimat€VMC) and mixed average§N, SR, and Exag¢tof the ground energy per
site eg=(H)/N, the total spin square and the order paramétefined as in Ref. 15for the triangular
Heisenberg antiferromagnet for various system sizes. SR data are obtained using the short-range correlation
functions generated by (p=2) andH? (p=7) reported in Ref. 15. All the values reported in this table are
obtained with large enougW and 1A 7, practically converged in the limit oA7—0 andM —o. Exact
results are obtained using Lanczos technique.

N VMC FN SR(p=2) SRp=7) Exact
€ 12 —0.5981 —-0.6083(1)  —0.6085(1)  —0.6105(1)  —0.6103
36 —0.5396 —-0.5469(1)  —0.5534(1)  —0.5581(1)  —0.5604
48 —-0.5366(1)  —0.5426(1)  —0.5495(1)  —0.5541(1)
108 —-0.5333(1)  —0.5387(1)  —0.5453(1)  —0.5482(1)
S 12 0.235 0.011() 0.0064) —0.002(4) 0.00
36 1.71 1.201) 0.651) 0.021) 0.00
48 2.551) 2.122) 1.441) 0.233) 0.00
108 6.364) 5.663) 4.354) 2.7(2) 0.00
m'2 12 0.9241 0.928@) 0.921G2) 0.91326) 0.9109
36 0.7791 0.770%) 0.76592) 0.75123) 0.7394
48 0.74963) 0.72435) 0.71772) 0.70805)
108 0.63387) 0.61824) 0.60403) 0.58365)

stabilize the sign problem instability. However, this is only ational FN guess by the conventional “release notfesince,
theoretical limit because the number of correlation functiondor large sizes the variances become untractable even for a
p required to obtain the exact result scales exponentially wittyery short imaginary time propagation.
the system size, yielding a computational effort similar to the _ This kind of size consistency is a very important property
exact diagonalization methods. o_f the present algorithm because the stab_lllty of the average
In order to minimize the numbep of correlation func-  Sign at fixedp allows apolynomialcomplexity of the algo-
tions used in the SR, one is limited to use an empirical apfithm as a function of the system size. The algorithm, how-
proach, based on physical intuition, and/or by comparisorfVer. is typically a large factor<100) more expensive than
with exact results obtained for small sizes with the exacthe standard FN as far as the computational time is con-
diagonalization technique. Typically, the fundamental ingre_cerneq, for a given statistical error on correlation functions.
dient that we have found to be important for strongly corre- Until now the method has been extended rather success-
lated Hamiltonians is the “locality.” The most useful corre- fully to several models: the mentiondgl —J, and triangular
lation functions are the short-ranged ones appearing in thigttice Heisenberg models, te-J model;” and the Hub-
HamiltonianH. A successful example is the application of bard model, where preliminary resditshow that a similar
the method to the Heisenberg model on the triangulafmprovement _of the standar_d F_N can also be obtained. In the
lattice™ where a remarkable accuracy is obtained by includ/atter case it is worth mentioning that a different approach,
ing also the short-range correlation functions generated bi1e Constrained Path Monte CafldCPMC) also represents
the application of the square of the Hamiltonian. Table |2 Very good remedy for the sign problem disease at least for
reports all the values of the ground state energy per site, tH8termediate coupling/t<8). On the other hand, different
total spin square and the antiferromagnetic order parametéthemes to get rid of the sign problem for continuum sys-
m'2 obtained with VMC, FN and GFMCSKor two differ- tems were previously proposed and successfully applied to
entp’s), up toN=108. However, the method of increasing SMall electron systens.

systematicallyp, by including in the SR the short-range cor- ~0.475
relation functions generated biyl,H?.-., does not seem F
general enough. For instance, it does not work for dhe —048 [

—J, Heisenberg model where the inclusion in the SR Eq.
(33 of long-range operators, such as the spin-spin correla- = _g 485
tion function SS; at large distancéi —j|, is crucial to im-

Z

prove the accuracy of the method, whereas the short range ~0.49 [ 3
ones generated biyl?> do not give any significant improve- r ]
ment. —0.495 ]

Similarly to FN, the GFMCSR turns out to be size- e b beon b L
consistent, in the sense that at fixgethe average correlation 0 0.001 0.002 _3.2003 0.004 0.005
functions can be sizeably improved with respect to the varia- N
tional guessgven in the thermodynamic limisee Fig. 5. FIG. 5. Finite size scaling of the GS energy per site Jor
This is a non trivial property because, whenever there is sige: 0.5 obtained with the FN and GFMCSR technique applied recon-
problem, it is basically impossible to improve the best varia-figuring the Hamiltonian §=1).



PRB 61 GREEN FUNCTION MONTE CARLO WITH STOCHAST . .. 2609

Although the GFMCSR s far from being the definite so- Denoting bysH(x,x") the sign of the matrix elemei, . ,
lution to the sign problem in the Monte Carlo simulation, it and using the fact that for all terms in this summation the
certainly represents an interesting tool to alleviate this instacondition (X" )Hy: x¥c(Xx)>0 is satisfied, we can finally
bility even for large system sizes. Its extension to continuumwrite AE as
systems, and also to CPMC, is indeed straightforward, even

though, in these cases, crossing the nodal surface in a varia- sf l/’e(X')-
tional way (see Appendix Ais not possible at present. AE=(1+7y) X [Hex||#(x) JoX)
(x,x")
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state energyeS'" and wave functiony®'" of H'", without
. eff eff eff
APPENDIX A: PROOF OF THE UPPER BOUND any sign problem. Henceg"'=(y*"|H|y°")=E,, where

the second inequality follows from the usual variational prin-
Here we follow the papéf to prove rigorously the upper ciple. We conclude therefore that the FN energy is an upper
bound property of the ground state energyHi5t’. We want  bound to the true ground state energy. One can easily verify
to show that the prescription given in Ed&3) and(14) for  that (yg|H|¥s)=(¥s|H®|¥s), and thus one can be sure
Heff leads to an upper bound for the ground state energy ohat the GFMC procedure improves on the energy of the
H. When importance sampling is used it is important toguiding wave functionES' < (yg|H® | ys)= (| H| s)-
change slightly the definition of the sign-flip term as in Eq.  Note that the standard lattice FN approkicis obtained

(15: for the particular parametey=0.
Vel X) = s WX My o ha(X). APPENDIX B: FORMAL PROOF
ety a0=0, X #x Xare OF THE GFMCSR CONDITIONS
(A1)

As stated in Sec. VI the SR conditio33) read
We now takeany state

2 Of (=2 0% (X, (B1)
ly=2 $(x)|x), (A2) K L
X for k=1,...p, with the normalization oneX,, (x)
and we compare its energy with respectHand toH®'": =2Zy¢hn(X). _ N .
The wave functiony, (x) after the SR conditions defined
AE=(y|(H""—H)| ). (A3) by Eq.(25) can be explicitly written in terms of the original

walker probability distribution. To this purpose, we single
AE can be written explicitly in terms of the matrix ele- out in the definition ofi; (x)
ments ofH, using the definitions given in Eq&l3), (14), and

(Al) Ej 5x,xj’Wj’
f so0= | (0w Prw X)) (82)
S ! XI
@S w00t| 3y i) ;
AE=(1+7) - P(x) L Hyw Ja(X) P(x) a termk in the above summation ov@mwhich gives an ad-
X

ditive contribution toy;,, namely ;= 1/IM =, {4} with

sf

=2 Hyr (X)) |, (A4)

{0 = f [dw’lg J [dw]

where the notatiorsf indicates conventionally the summa-

tion over the off-diagonal elements such that x>, X(W',X"5W,X) Pr(W, X) Oy x1 Wi
Y(X)Hy x 1 hs(X")>0. In this double summation each pair x

of configurationsx andx’ occurs twice. We combine these (B3)

terms and rewrite EqA4) as a summation over pairs: where in the above equation we have substituted the defini-

tion of P’ in terms ofP given by Eqs(24) and(25). In the

sf
|(x)|2 Y(x') +(x")|2 Ps(X) latter equation it is easy to integrate over all variables

AE=(1+7) X Hyy

(xx")

(%) Yo(X) wi ,wE'™ x/ for j#k using that the kerneX is particularly
simple as discussed in Sec. VI. Then, the remaining three

. . ! .
. (A5) integrals and summations over, ,wf'" x| can be easily

= )" (X") = h(X")* (%)
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performed using the simplé functions that appear in the allows to satisfy the SR conditior83), it is sufficient that
kernelX and the definition 0f8=Eijj/Ej|pXj|, so that one  «ay are determined by the simple linear equation

easily obtains K
E _2 WjV] c3
, EJWJ 1P [ Sx, Skokr k' = Siw; €3
{l/fn(x)}k: [dﬂ]z Pn(V_VyX SgNpPy ] .
X iPx where
(B4)

We can replace in general SOEE|py |6y /2Py 3 wivive
=3 IS h I figu- SRTTS W (€9

iPx, 5x, /2Py, €ven when, occasionally, more con igu s w!

ratlons satlsfw(J—x 20 Thus, we obtain a closed expression

for /() after the simple summation on the indkex is the covariance matrix of the operatd®¥ over the refer-
n

ence weightsrvf. The solution to Eq(C3) is possible if the
o Wl JpX X, determinant ofs, - is non-vanishing. Since represents an
. (B5) overlap matrix defmed with a nonsingular scalar product
2P, k
(VMvK'y = EWJ JvJ /2 w asw are positive, its determi-
Then  the normalization condition =,4/(x) nant is always nonzero prowded the vectofsare linearly
= [[AW]S(Po(W,X) (Z;W; /M) =S, (X) easily fi)llrg)ws. independent. Thus, in the latter case, the solution to(€8).

On the other hand, the left-hand side of can be also  €Xists and is unique.
computed easily, yielding St E86) S On the other hand suppose that among pheectorsv¥

only p’<p are linearly independent. Thus, the remainmg

Ph(x) = f [dw]E Pr(W,X)

0. OK —p’ vectors can be written as linear combinationpdflin-
2w 2Py Ox. . .
2 Oy wn(x>—f [dW]E Pn(w,X) ’ — early independent onébenceforth we assume that these lin-
X' X iPx; early independent vectors are labeled by the consecutive in-

(B6)  dicesk=1,...,p")

whereOk —EX/OX/ X; is the mixed estimator of the operator
o E XEvE, (C5)
Finally, by substituting the conditiof84) into the previ-

ous equation, one obtains o ) -
for k'>p’, wherex, are suitable coefficients. The same

2w O previous considerations allow to satisfy the fipst SR con-
ditions as for Eq(C3) a unique solution exists if we restrict

> O (%)= f [dw]E Pr(W,X)

’

x'ix all the sums fok, k<p’, andpxj is determined only by the
first p’ linearly independent vectors in EC2). With the
—
- 2 Oyr xttn(%), (B7) determineol:)Xj it is obvious that
X', X
: - . . ‘
which proves the statement at the beginning of this section. Ejpxj P EjoV}(
Sipy W, (€6
APPENDIX C: PROOF OF EXISTENCE iPx; i

AND UNIQUENESS OF SOLUTION

. o _ ,
FOR THE RECONFIGURATION Is verified fork=1, ... p".

On the other hand we can easily show that all the remain-
In this appendix, we prove that given tipe-1 SR con- iNg SR conditiongC6) for k' >p’ are identically satisfied. In
ditions (34) the elements of the table,. are uniquely deter- fact, in this case the LHS of E{C6) can be manipulated as
mined for each walker configuratiom_vl(é). follows, using definition(C5)
We define here the quantity

— JpxJ j v Px

k_ Ak _ —_— =D, X | =

V] —(OXj 05), (Cy Zipy, K1 K 2Py

for each configuratiorj, where 6‘f‘=2jw{0§j/2jwf is the p’

average value over the reference weighlg%,, of the operator = Z Xk ( S )

considered labeled by the numberThe reference weights N :

w are restricted to be strictly positive but can be in general 2]\/']“\/\/J

arb|trary functions of all the FN weightsw?®'’} the exact = Sw (C7
weights{w;} and the configurationx;}. It is easy to show I

that, in order that where in the intermediate steps we have used Eq. Cé& for

<p’. Thus, the SR conditions determine uniqup]q/in any

ij:ij 1+ ava) (%) casej_and this conclude the important statement of this Ap-
pendix.
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Ge' are non-negativéy definition the off-diagonal ones of

: _— . . ff i i i
With the above definitions it is also possible to show thatG(_e are always non-negan)/.eTms requirement often deter-
p,. remains unchanged for any linear transformation of theMines a very large constant shift, which increases with larger
J .

operator set. Namely,
ak/:z Lkr’kok‘f'ﬂkr (C8)
k

in the SR conditions, where the real mattixs assumed to

suppose we consider the new operato?kze and is not knowa priori. The trouble in the simulation

may be quite tedious, as if for the chosé&na negative di-
agonal element is found fa&¢ff, one needs to increase
and start again with a completely new simulation. The way
out is to work with exceedingly largd, but this may slow

have nonvanishing determinant. Within this assumption it islown the efficiency of the algorithm as in the stochastic ma-

simple to show thapXj will remain unchanged.

trix py: x the probability to remain in the same configuration

In fact, the new set of operators will define a new cova-Pa may become very close to one

riance matrix between the new vectors

Tli(,zzk Lk’,kV}(’ (Cg)

i.e.,v=Lv, s=LsL", whereLT is the transposed df and
the set of new equations

- - Zwyk
2 Sk k! Xgr = et
o Zjw;
is obviously satisfied by
a=(L Y a, (C10

A— Hx,x_(1+ Y)st(x)
A—E, '

pg= (D1)

whereVg(x) is given in Eq.(15) andE, is the local energy
Eq. (5) that do not depend on given the configuratio.
Following Ref. 7 the problem of working with larg&
can be easily solved with no loss of efficiency. We report
this simple idea applied to our particular algorithm at fixed
number of walkers. If\ is large it is possible to take a large
value ofk, (of orderA) iterations between two consecutive

wheree is the solution of the SR conditions before the trans-reconfigurations, because in most iterations the configuration

formation (C8). Whenever the numbegu’ of linearly inde-
pendentvX is less tharp, also the number of linearly inde-

pendeniv® will be p’ asL is nonsingular. The solutions
anda, as described previously, refer therefore to the fist

components, and all the matrix involved, suci aands are
in this case restricted to this subspace.
Then, by Eq(C10 and Eq.(C9), it easily follows that the

new coefficients ijzwjf(lJrEkakT/}‘) =W/ (1+ Syayvl)
= pxj, which finally proves the statement of this remark.

2. Optimization of the weights

The definition of the weightqs;xj that satisfy the SR con-

dition (33) is highly arbitrary because as we have mentioned

before the probabilitie®,, andP;, do not uniquely determine
the quantum stateg,, and ¢, that are subject to the condi-

x is not changed. The idea is that one can deterraipgori,
given py, what is the probabilityt(k) to makek diagonal
moves before the first acceptance of a new configuration
with x’"#x. This is given by t(k)=p§(1—pd) for k
=0,...n-1 andt(n,)=pg' if no off-diagonal moves are
accepted during thig, trials that are left to complete the loop
without reconfigurations.

It is a simple exercise to show that, in order to sample
t(k) one needs one random numbex §<1, so that the
stochastic integer numbércan be computed by the simple
formula

Iné&

o (D2)

k=min<n|,

tions (33) In this sense there may be different definitions Ofwhere the brackets indicate the integer part. During K‘he

the weightspXj that may behave differently at finige with
less or more accuracy. Though E¢33) are equally satisfied
for different choices of the coefficienp@j the two states),
andy,, may be much closeiess biagfor an optimal choice.
The optimal choice that minimizes the distarigg— /|, at
fixed numbermp of correlation functions included in the SR,

iterations one can iteratively apply this formula by book-
keeping the number of iteratioms that are left to complete
the loop without reconfigurations. At the first iteration
=kp, thenk is extracted using EqD2), and the weights
(w,wef) of the walker are updated accordingkaliagonal
moves and ifk<<n, a new configuration is extracted at ran-

has not probably been found yet. We have attempted severdPm according to the off-diagonal matrix elementspef, .

choices for the reference weightq’ of Eq. (C2) but until
now no significant improvement of the simplest FN dfles
has been obtained.

APPENDIX D: THE LIMIT A—x
FOR THE POWER METHOD

The constant\, which defines the Green functidd,. 4
= A8 x—Hy , and the FN oneG®' (12) has to be taken

The weights are correspondingly updated for this off-
diagonal move, and finally, ik<n;, n, is changed ton,
—k—1, so that one can continue to use Hg2) until all the

K, steps are executed for each walker.

The interesting thing of this method is that it can be
readily generalized forA—o by increasingk, with A,
namelyk,=[AA 7], where A7 represents now exactly the
imaginary time difference between two consecutive recon-

. . ff .
figurations when the exact propagatr27 or e H* 47 js

large enough to determine that all the diagonal elements adpplied statistically.
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